
Multi-view data types
Scalable concurrency in the multi-core era

Deepthi Akkoorath1, José Brandão2, Annette Bieniusa1, Carlos Baquero3

1Technical University of Kaiserslautern
Germany

2Universidade do Minho
Braga, Portugal

3HASLab, Universidade do Minho & INESC TEC
Braga, Portugal

Concurrent programs in multi-core

Synchronization

Speedup

Threads

2/13

Overview

Distributed systems
• Eventual consistency + CRDTs : Synchronisation free
• Fast, Scalable, Available

Goal
• Weak consistency : Less synchronisation
• Speed up!

Global-Local view model
Multi-view data types

3/13

Overview

Distributed systems
• Eventual consistency + CRDTs : Synchronisation free
• Fast, Scalable, Available

Goal
• Weak consistency : Less synchronisation
• Speed up!

Global-Local view model
Multi-view data types

3/13

Global-local view model

Thread A Thread B

10 10

10

Local view

Global view

c.inc() c.inc()
c.inc()
c.merge()

c.merge()

4/13

Global-local view model

Thread A Thread B

11 10

10

Local view

Global view

c.inc()

c.inc()
c.inc()
c.merge()

c.merge()

4/13

Global-local view model

Thread A Thread B

11 11

10

Local view

Global view

c.inc() c.inc()

c.inc()
c.merge()

c.merge()

4/13

Global-local view model

Thread A Thread B

11 12

10

Local view

Global view

c.inc() c.inc()
c.inc()

c.merge()
c.merge()

4/13

Global-local view model

Thread A Thread B

11 12

12

Local view

Global view

c.inc() c.inc()
c.inc()
c.merge()

c.merge()

4/13

Global-local view model

Thread A Thread B

13 12

13

Local view

Global view

c.inc() c.inc()
c.inc()
c.merge()

c.merge()

4/13

Operations

Local View: (snapshot, local)

Global view that was
last seen by this thread

Accumulates local
updates

Global View: g

weakUpdate
weakRead

strongUpdate
strongRead

merge

5/13

Operations

Local View: (snapshot, local)

Global view that was
last seen by this thread

Accumulates local
updates

Global View: g

weakUpdate
weakRead

strongUpdate
strongRead

merge

5/13

Operations

Local View: (snapshot, local)

Global view that was
last seen by this thread

Accumulates local
updates

Global View: g

weakUpdate
weakRead

strongUpdate
strongRead

merge

5/13

Operations

Local View: (snapshot, local)

Global view that was
last seen by this thread

Accumulates local
updates

Global View: g

weakUpdate
weakRead

strongUpdate
strongRead

merge

5/13

Multi-view data types

Mergeable types
• Implements weak operations and merge

Hybrid types
• Implements weak, strong and merge operations
• Hybrid counter

synchronous increment when close to a target
• Hybrid queue

weak enqueue and synchronous dequeue

6/13

CRDTs?

• G-Set
• merge = union of sets

• Counter
• Map: id→ int
• merge = max of each elem

CRDT merge is expensive

Multi-view data types

• Multiple versions (view)
• Isolated access to each view
• Fast merge

7/13

CRDTs?

• G-Set
• merge = union of sets

• Counter
• Map: id→ int
• merge = max of each elem

CRDT merge is expensive

Multi-view data types

• Multiple versions (view)
• Isolated access to each view
• Fast merge

7/13

CRDTs?

• G-Set
• merge = union of sets

• Counter
• Map: id→ int
• merge = max of each elem

CRDT merge is expensive

Multi-view data types

• Multiple versions (view)
• Isolated access to each view
• Fast merge

7/13

CRDTs?

• G-Set
• merge = union of sets

• Counter
• Map: id→ int
• merge = max of each elem

CRDT merge is expensive

Multi-view data types

• Multiple versions (view)
• Isolated access to each view
• Fast merge

7/13

Counter

• Global view: int g

• Local view :
(int s, int l)
Thread-local copies
Exclusive access ⇒ no
synchronization
Synchronous merge

weakInc () {
l ++;

}
weakValue () {

return s+ l ;
}
merge () {

atomic {g += l ;
s = g ; l = 0;}

}
s t rong Inc () {

atomic {g++;}
}

8/13

Multi-view list

head

T1

T2

After T1 commits:

T1

T2

head

After T2 commits:

T1

T2

head

9/13

Evaluation: Hybrid Counter
Goal: increment until a target

Periodic merge ⇒ Divergence from target
Switches to strong update after a threshold

��

������

������

��������

������

��������

�� �� �� ��� ��� ��� ��� ��� ��� ���

��
��
��
�

�������

����
�����
������
�������
��������
���������

����

10/13

Evaluation: Breadth first traversal

Using hybrid queue : weak enqueue and strong dequeue

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1 2 4 8 12 16 20 24

S
p

e
e
d

 u
p

No.of threads

Lin-Lockbased
Lin-LockFree
M-Lockbased

M-LockFree

11/13

Related work

Mergeable types

Doppel [Narula et al., 2014]

in-memory transactions

Concurrent revisions
[Burckhardt et al., 2010]

fork join model
“mergeable” types

Weak consistency

Quasi linearizability [Afek et al., 2010]

Weak/medium future linearizability
[Kogan and Herlihy, 2014]

K-linearizability [Aiyer et al., 2005]

Quiescent consistency
[Aspnes et al., 1994]

12/13

Summary

Global-local view model
• fast local state, distant global state

Impact on underlying data structure design
• Multiple versions, Merge

Combination of weak and strong updates
• A spectrum of consistency

Thank you!
akkoorath@cs.uni-kl.de

13/13

References I

Afek, Y., Korland, G., and Yanovsky, E. (2010).
Quasi-linearizability: Relaxed consistency for improved concurrency.
In Proceedings of the 14th International Conference on Principles of Distributed
Systems, OPODIS’10, pages 395–410, Berlin, Heidelberg. Springer-Verlag.

Aiyer, A., Alvisi, L., and Bazzi, R. A. (2005).
On the availability of non-strict quorum systems.
In Proceedings of the 19th International Conference on Distributed Computing,
DISC’05, pages 48–62, Berlin, Heidelberg. Springer-Verlag.

Aspnes, J., Herlihy, M., and Shavit, N. (1994).
Counting networks.
J. ACM, 41(5):1020–1048.

Burckhardt, S., Baldassin, A., and Leijen, D. (2010).
Concurrent programming with revisions and isolation types.
In Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’10, pages 691–707, New York, NY,
USA. ACM.

1/2

References II

Kogan, A. and Herlihy, M. (2014).
The future(s) of shared data structures.
In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing,
PODC ’14, pages 30–39, New York, NY, USA. ACM.

Narula, N., Cutler, C., Kohler, E., and Morris, R. (2014).
Phase reconciliation for contended in-memory transactions.
In Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation, OSDI’14, pages 511–524, Berkeley, CA, USA. USENIX Association.

2/2

	Appendix

