
Multi-view data types
Scalable concurrency in the multi-core era
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Concurrent programs in multi-core
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Overview

Distributed systems
• Eventual consistency + CRDTs : Synchronisation free
• Fast, Scalable, Available

Goal
• Weak consistency : Less synchronisation
• Speed up!

Global-Local view model
Multi-view data types
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Global-local view model
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Global-local view model
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Operations

Local View: (snapshot, local)

Global view that was
last seen by this thread

Accumulates local
updates

Global View: g

weakUpdate
weakRead

strongUpdate
strongRead

merge
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Multi-view data types

Mergeable types
• Implements weak operations and merge

Hybrid types
• Implements weak, strong and merge operations
• Hybrid counter

synchronous increment when close to a target
• Hybrid queue

weak enqueue and synchronous dequeue
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CRDTs?

• G-Set
• merge = union of sets

• Counter
• Map: id→ int
• merge = max of each elem

CRDT merge is expensive

Multi-view data types

• Multiple versions (view)
• Isolated access to each view
• Fast merge
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Counter

• Global view: int g

• Local view :
(int s, int l )
Thread-local copies
Exclusive access ⇒ no
synchronization
Synchronous merge

weakInc ( ) {
l ++;

}
weakValue ( ) {

return s+ l ;
}
merge ( ) {

atomic {g += l ;
s = g ; l = 0;}

}
s t rong Inc ( ) {

atomic {g++;}
}
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Multi-view list

head

T1

T2

After T1 commits:

T1

T2

head

After T2 commits:

T1

T2

head
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Evaluation: Hybrid Counter
Goal: increment until a target

Periodic merge ⇒ Divergence from target
Switches to strong update after a threshold
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Evaluation: Breadth first traversal

Using hybrid queue : weak enqueue and strong dequeue
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Related work

Mergeable types

Doppel [Narula et al., 2014]

in-memory transactions

Concurrent revisions
[Burckhardt et al., 2010]

fork join model
“mergeable” types

Weak consistency

Quasi linearizability [Afek et al., 2010]

Weak/medium future linearizability
[Kogan and Herlihy, 2014]

K-linearizability [Aiyer et al., 2005]

Quiescent consistency
[Aspnes et al., 1994]
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Summary

Global-local view model
• fast local state, distant global state

Impact on underlying data structure design
• Multiple versions, Merge

Combination of weak and strong updates
• A spectrum of consistency

Thank you!
akkoorath@cs.uni-kl.de
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